Time-of-flight neutron imaging on IMAT@ ISIS: a new user facility for materials science

Published in Journal of Imaging, 2018

The cold neutron imaging and diffraction instrument IMAT at the second target station of the pulsed neutron source ISIS is currently being commissioned and prepared for user operation. IMAT will enable white-beam neutron radiography and tomography. One of the benefits of operating on a pulsed source is to determine the neutron energy via a time of flight measurement, thus enabling energy-selective and energy-dispersive neutron imaging, for maximizing image contrasts between given materials and for mapping structure and microstructure properties. We survey the hardware and software components for data collection and image analysis on IMAT, and provide a step-by-step procedure for operating the instrument for energy-dispersive imaging using a two-phase metal test object as an example.

Winfried Kockelmann, Triestino Minniti, Daniel E Pooley, Genoveva Burca, Ranggi Ramadhan, Freddie A Akeroyd, Gareth D Howells, Chris Moreton-Smith, David P Keymer, Joe Kelleher, Saurabh Kabra, Tung Lik Lee, Ralf Ziesche, Anthony Reid, Giuseppe Vitucci, Giuseppe Gorini, Davide Micieli, Raffaele G Agostino, Vincenzo Formoso, Francesco Aliotta, Rosa Ponterio, Sebastiano Trusso, Gabriele Salvato, Cirino Vasi, Francesco Grazzi, Kenichi Watanabe, Jason WL Lee, Anton S Tremsin, Jason B McPhate, Daniel Nixon, Nick Draper, William Halcrow, Jim Nightingale. (2018). “Time-of-flight neutron imaging on IMAT@ ISIS: a new user facility for materials science.” Journal of Imaging.